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Caltech PSAAP Center Overview Hypervelocity Impact Application

Hypervelocity Impact

PSAAP: Advance the prediction of the
behavior of complex systems with
quantified margins and uncertainties.

Caltech Center: Develop predictive
science methods focusing on
high-energy-density dynamic response
of materials.

Overarching ASC-class application is
hypervelocity impact:
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Figure: Impact flash from a
7.9 km/s hypervelocity test.
(NASA Ames Research
Center)
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Caltech PSAAP Center Overview Hypervelocity Impact Application

Why Hypervelocity Impact?

Generation of states of matter of interest:

high pressures (160–800GPa);
high strain rates (up to 1,000 s−1);
high temperatures (4,000–36,000K).

Multiphysics, complex material behavior:

melting, vaporization, ionization, plasma;
luminescence and radiative transport;
hydro instabilities, mixed-phase flows,
mixing;
solid-solid phase transitions,
high-strain-rate deformation,
thermo-mechanical coupling;
fracture, fragmentation, spall and ejecta,
deformation instabilities e.g. shear
banding.

⇒ Experimental and modeling challenges.

Figure: 25 ns laser side-lit
exposures of a 5.4 km/s
nylon-on-Al impact in the
Caltech SPHIR facility.
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Caltech PSAAP Center Overview Hypervelocity Impact Application

Parallel Optimal Transportation Mesh-Free Solver

Optimal Transport
incremental variational update

formulation with geometrically

exact discrete Lagrangians

Mesh-Free
physical data carried by material

points, with mesh-free local

max-ent nodal interpolation

Parallelization
asynchronous shadow nodes in
overlapping range boxes
• linear scaling to 256 cores
• good scaling to 2048 cores

(bound by communications cost)
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Uncertainty Quantification

Uncertainty Quantification
Or: How I Learned to Stop Worrying and Bound Things
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Uncertainty Quantification Optimal Uncertainty Quantification (OUQ)

Optimization-Driven UQ

Bounds Mean Optimizations!

Conventional worst/best-case
design is an optimization problem
over possible design and operation
parameters:

min
x∈X

G(x), max
x∈X

G(x).

Insufficient to make statements
about e.g. probabilities of events.

We want to handle generic
information about the probability
distributions and response
functions, which are in general
incompletely specified.

bC

bC

minimize w.r.t. inputs x ∈ X

maximize

bC

bC

x ∈ X

G(x)

Figure: Optimizing G(x) over
x ∈ X yields deterministic
worst- and best-case outcomes.
What if the distribution of the
inputs is only partially known?
(i.e. non-parametric epistemic
uncertainty.)
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Uncertainty Quantification Optimal Uncertainty Quantification (OUQ)

Optimal Uncertainty Quantification (OUQ)

OUQ is a mathematically rigorous
formulation of UQ that places information
at the center of the problem — items of
information are viewed as constraints.

Particularly suited to the regime of
high-consequence decision-making with
incomplete information.

Naturally generalizes classical interval
analysis and optimization-based UQ
methods to the probabilistic regime.

Basic idea: pick a quantity of interest and
optimize (minimize/maximize) with respect
to the scenarios compatible with your
current state of knowledge.

UQ Problems

Reliability

Certification

Verification

Validation

Extrapolation

Prediction

Sensitivity

Model Reduction

. . .

Owhadi & al. (2010)

http://arxiv.org/abs/1009.0679
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Uncertainty Quantification Optimal Uncertainty Quantification (OUQ)

OUQ Paradigm

Abstract system G : X → Y with random inputs X with probability
distribution P ∈ P(X ) — but the pair (G,P) is imperfectly known!

Quantity of interest E[qG], e.g. the mean E[G], or the probability of
failure P[G ∈ F ] ≡ E[1[G ∈ F ]] for some critical/failure event F .

Feasible set of admissible scenarios that could be the reality (G,P):

A :=







(g, p)

∣

∣

∣

∣

∣

∣

(g : X → Y, p ∈ P(X )) is consistent with
all given information about the real system (G,P)
(e.g. legacy data, first principles, expert judgement)







.

Optimal bounds on E[qG] found by minimizing/maximizing Ep[qg]
over (g, p) ∈ A:

min q ≤ min
(g,p)∈A

Ep[qg] ≤ E[qG] ≤ max
(g,p)∈A

Ep[qg] ≤ max q.
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Uncertainty Quantification Reduction of OUQ Problems

Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the
extremal scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

A

Figure: Just as a linear program
finds its extreme value at the
extremal points of a convex
domain in R

n, OUQ problems
reduce to searches over finite-
dimensional families of extremal
scenarios.
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Uncertainty Quantification Reduction of OUQ Problems

Reduction of OUQ Problems — Example

Example

If we are interested in bounding P[X ≥ a] where
X is a random variable known to satisfy

X ≥ 0 and E[X] = m

then we find the extreme values by searching
among probability distributions that are just two
point masses, i.e. of the form

p = cδx + (1− c)δy

subject to: x, y ≥ 0

0 ≤ c ≤ 1

m = cx+ (1− c)y.

m

“generic” admissible p

reduction theorems

bC bC

x m y

c

1− c

extremal admissible p
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Uncertainty Quantification Propagating Information through Hierarchies

(Non-)Propagation of Information

One can consider hierarchies (directed acyclic graphs) of OUQ modules:

bC

bC

bC

bC

bC

bC

bC

bC

A

bC

bC

bC

bC

B

information on
input quantities

bC

bC

bC

bC

information on
intermediate
quantities

C bCbC
information on
final quantity
of interest

propagate using OUQ

Figure: Because OUQ is a sharp information propagation scheme, the results of
sensitivity analysis (“inverse OUQ”) give non-trivial insights into the roles of the
various pieces of input information. Some inputs may even be irrelevant!
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Uncertainty Quantification OUQ Experimental Design

OUQ-Driven Experimental Planning

Range of prediction for q given A:

R(q|A) := max
(g,p)∈A

Ep[qg]− min
(g,p)∈A

Ep[qg],

R(q|A) small ←→ A very predictive.

Let AE,c denote those scenarios in A that
are consistent with getting outcome c from
some experiment E.

The optimal next experiment E∗ satisfies a
minimax criterion, i.e. E∗ is the most
predictive even in its least predictive
outcome:

E∗ minimizes E 7→ max
outcomes c

of E

R(q|AE,c).

bCbC
AE1 E2

bCbC

run exp’t E2

AE2,c2F1 F2

bCbC

run exp’t F1

A(E2,c2),(F1,d1)
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Uncertainty Quantification Software for OUQ: The mystic Framework

The mystic Optimization Framework

OUQ has developed in symbiosis with the mystic optimization framework.

mystic

open-source Python

simple interface to
massively parallel
optimization

seamless use of
heterogeneous resources

OUQ calculations with
hundreds of variables

pre-applied constraints

swappable optimizers
launched as services

McKerns et al. (2010)

http://dev.danse.us/trac/mystic
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